CED

Rupture et endommagement des matériaux vitreux

CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette

GDR Matériaux Vitreux, Dourdan, 10 septembre 2009

CEO PLAN DE L'EXPOSÉ

Mécanique de la rupture: Théorie continue

Rôle des défauts, failles de Griffith Propagation de fissures: critère de stabilité, équation de mouvement, trajectoire...

Rôle du désordre microstructural: Description stochastique

Fissuration intermittente ténacité effective Faciès de rupture Instabilité dynamique, branchement

Contrainte à rupture d'un solide: Rôle des défauts

Distribution de contraintes à rupture

<u>... Dominé par les liens</u> <u>les plus faibles</u>

<u>Statistique</u> <u>d'événements extrêmes</u>

Loi de Weibull

 $P_{<}=1-\exp(-(\sigma_{f} / \sigma_{*})^{m})$

Ex: verre sodocalcique et alumine (d'après Lawn, 1993)

Difference de Griffith: approche <u>thermodynamique</u>

Mode II Cisaillement dans le plan, glissement

Mode III Cisaillement hors plan déchirement

Mode I Tension, ouverture K_T

KII

CET <u>Mécanique Linéaire Elastique de la</u> <u>Rupture (MLER)</u>

$$G = K_I^2 / E + K_{II}^2 / E + (1 + v) K_{III}^2 / E$$

$$G > \Gamma$$

$$G = K_I^2 / E$$

Freund (1990),

Calculs élastodynamiques

$$\sigma_{ij} \approx \frac{K_I}{\sqrt{2\pi r}} f_{ij}(\theta, \mathbf{v})$$

$$G = \mathcal{A}(\mathbf{v}) K_I^2 / E$$

avec $A(\mathbf{v}) \sim (1 - \mathbf{v} / C_R)$

C_R vitesse de Rayleigh (ondes sonores sur une surface)

A <u>Mécanique Linéaire Elastique de la</u> <u>Rupture: Bilan</u>

Equation de trajectoire:

Cotterell & Rice (1980)

Plan de fracture choisi de manière à maximiser la $K_{II}=0$ contrainte de tension

Critère de rupture: $G_{I} > \Gamma (\sim 2\gamma)$ ou K_I > K_{Ic}

Equation de mouvement: Freund (1990)

A(v)K_I²/Ε=Γ

Facteur relativiste : $A(V) \sim (1-V/C_R)$

C_R vitesse de Rayleigh

Verre de Silice

 $K_{Ic} \sim 0.8 \text{MPa.m}^{1/2}$ $E \sim 70 \text{GPa}$ $F \sim 10 \text{ J/m}^2$ $r \sim 10 \text{ J/m}^2$

Énergie de surface $2\gamma \sim 0.2 \text{ J/m}^2$ « atomique »

Equation de mouvement: prédictions Vitesse limite théorique = vitesse de Rayleigh

CEO PLAN DE L'EXPOSÉ

Mécanique de la rupture: Théorie continue

Rôle des défauts, failles de Griffith Propagation de fissures: critère de stabilité, équation de mouvement, trajectoire...

Rôle du désordre microstructural: Description stochastique

Fissuration intermittente ténacité effective Faciès de rupture Instabilité dynamique, branchement

Coupe de 5 A d'un verre de Silice simulé (crédit Van Brutzel)

- Hétérogène aux échelles sub-nanométriques
- > Répercutions macroscopiques sur la rupture?

$$\mu \frac{\partial f(z,t)}{\partial t} = \left(K_I^0 - K_{Ic}^0 \right) + \frac{1}{2\pi} K_I^0 \int_{-\infty}^{\infty} \frac{f(z',t) - f(z,t)}{(z'-z)^2} dz' + K_{Ic}^0 \eta(z,f(z,t))$$

Equation de mouvement d'une ligne "élastique longue portée" en propagation dans un matériau aléatoire

Schmittbuhl et al. (95), Ramanathan et al. (97)

Fracture mechanics for ideal brittle materials...

Prediction: regular continuous crack growth velocity

Interfacial crack

Observation: intermittent crack growth with sudden random jump of all sizes !!!

Désordre & equation de mouvement $\mu \frac{\partial f(z,t)}{\partial t} = \left(K_{I}^{0} - K_{Ic}^{0}\right) + \frac{1}{2\pi}K_{I}^{0}\int_{-\infty}^{\infty} \frac{f(z',t) - f(z,t)}{(z'-z)^{2}}dz' + K_{Ic}^{0}\eta(z,f(z,t))$ $F = K_{I}^{0} - K_{Ic}^{0}$ $F > F_{c}$

$$\begin{aligned} u \frac{\partial f(z,t)}{\partial t} = \left(K_{I}^{0} - K_{Ic}^{0} \right) + \frac{1}{2\pi} K_{I}^{0} \int_{-\infty}^{\infty} \frac{f(z',t) - f(z,t)}{(z'-z)^{2}} dz' + K_{Ic}^{0} \eta(z, f(z,t)) \\ F = K_{I}^{0} - K_{Ic}^{0} \\ F \sim F_{c} \end{aligned}$$

Désordre & equation de mouvement Prediction: fissuration quasi-statique intermittente

Tremblement de terre

Fissure interfaciale dans le Plexiglas (Maloy et al, 2006)

Epluchage du papier (Kovoisto et al. PRL, 2007)

Observée dans de nombreux matériaux fragiles hétérogènes !!!

Désordre & equation de mouvement Applications: Statistique des ténacités Charles, Hild, Roux, Vandembroucq, 2003, 2004, 2006

F

Limite thermodynamique:

 $K_{Ic}^{eff} = cte = K_{Ic}^{\infty}$

L fini: distribution statistique

$$K_{Ic}^{eff} < K_{Ic}^{\infty}$$

$$\sigma = \left\langle \left(K_{Ic}^{eff} - \left\langle K_{Ic}^{eff} \right\rangle \right)^2 \right\rangle^{1/2} \propto L^{-1/\nu}$$

$$M_{Ic}^{eff} = L_{Ic}^{1/\nu} \left(K_{Ic}^{\infty} - K_{Ic}^{eff} \right)$$

С

 $L \propto c$

 $K_{Ic}^{eff} \propto \frac{F}{c^{3/2}}$

Longueur d'arrêt dans les tests d'indentation

CEO PLAN DE L'EXPOSÉ

Mécanique de la rupture: Théorie continue

Rôle des défauts, failles de Griffith Propagation de fissures: critère de stabilité, équation de mouvement, trajectoire...

Pôle du désordre microstructural: Description stochastique

Fissuration intermittente ténacité effective Faciès de rupture Instabilité dynamique, branchement

Faciès de rupture: lois d'échelle

Mandelbrot et al Nature 84; Bouchaud et al. EPL 90; Maloy et al. PRL 92,...

Faciès de rupture: lois d'échelle

Mandelbrot et al Nature 84; Bouchaud et al. EPL 90; Maloy et al. PRL 92,...

Faciès de rupture: lois d'échelle

Mandelbrot et al Nature 84; Bouchaud et al. EPL 90; Maloy et al. PRL 92,...

Local symmetry Principle

 $\mathsf{K}_{\mathrm{II}}\left(\mathsf{M}\right)=\ 0$

B. Cotterell et J. Rice (1980)

K₁0

Χ

Loading perturbation induced by out-of-plane roughness

$$\mathbf{K}_{\mathrm{II}}(\mathbf{M}) = \mathbf{0} = 2K_{I}^{0} \frac{\partial h(x,z)}{\partial x} - 2K_{I}^{0}A \int_{-\infty}^{+\infty} \frac{h(x,z') - h(x,z)}{(z'-z)^{2}} dz' + \text{negligible}$$

Larralde & Ball (1995), Movchan et al. (1998)

$$K_{II}(M) = 0 = 2K_I^0 \frac{\partial h(x,z)}{\partial x} - 2K_I^0 A \int_{-\infty}^{+\infty} \frac{h(x,z') - h(x,z)}{(z'-z)^2} dz' + \text{negligible}$$
$$+ K_{II}^0$$

Slight experimental misalignment

$$K_{II}(M) = 0 = 2K_I^0 \frac{\partial h(x,z)}{\partial x} - 2K_I^0 A \int_{-\infty}^{+\infty} \frac{h(x,z') - h(x,z)}{(z'-z)^2} dz' + \text{negligible}$$

+ $K_{II}^0 + \eta(x,z,h(x,z))$
Material disorder

$$\frac{\partial h(z,x)}{\partial x} = -A \int_{-\infty}^{+\infty} \frac{h(z',x) - h(z,x)}{(z'-z)^2} dz' + \frac{K_{II}^0}{K_I^0} + \eta(z,x,h(z,x))$$

fonction de structure:

$$G(\Delta z, \Delta x) = \left\langle \left(h(z + \Delta z, x + \Delta x) - h(z, x) \right)^2 \right\rangle$$

 $\delta h \ll a$

δh » a

 $\eta(x,z,h(x,z)) \sim \eta_q(z,h(x,z)) + \eta_t(z,x)$

Profile selon *z* auto-affine:

Kolton et al. (05), Tanguy et al. (98), Rosso & Krauth (02), Duemmer & Krauth (07),

$$G(\Delta z, \Delta x = 0) \propto \Delta z^{2\varsigma} \quad \zeta = 0.4$$

 $\eta(x,z,h(x,z)) \sim \eta_t(z,x)$

Rugosité logarithmique Ramanathan, Ertas & Fisher (97)

$$G(\Delta z, 0) \sim 0.318 \frac{D}{A}a^2 \cdot \log(\frac{\Delta z}{a}) + 0.549 \frac{D}{A}a^2$$

Contradiction apparente

CER Désordre & équation de trajectoire

Centre & équation de trajectoire

Silice,V=300 m/s, (Crédit C. Rountree)

20 nm

Aluminsosilicate en corrosion sous contrainte,V=10⁻¹⁰m/s, (Celarie et al, 2003)

75 nm

Fixée par l'endommagement?

CEO PLAN DE L'EXPOSÉ

Mécanique de la rupture: Théorie continue

Rôle des défauts, failles de Griffith Propagation de fissures: critère de stabilité, équation de mouvement, trajectoire...

Rôle du désordre microstructural: Description stochastique

Fissuration intermittente ténacité effective Faciès de rupture **Instabilité dynamique, branchement**

Equation de mouvement: prédictions Vitesse limite théorique = vitesse de Rayleigh

Rupture dynamique: instabilité de branchement Y V<V_c X Х Ζ Ζ Plexiglas (Sharon et al, 1999) 800 600 V (m/s) **→** X 400 Y 200 0**⊾** 20 30 4050 60 70 Longueur de fissure (mm)

Rupture dynamique: instabilité de branchement

CEC Rupture dynamique: instabilité de branchement

Une explication possible de $V_{max} < C_R$

Rôle des hétérogénéités

Wallner 1939, Sharon et al, 2001, DB & Ravi-Chandar 2003...

Rôle des hétérogénéités

Wallner 1939, Sharon et al, 2001, DB & Ravi-Chandar 2003...

➔ A haute vitesse, production de lignes de Wallner sans défaut/pulse acoustique introduit de manière externe

CED Instabilité de branchement... ... une origine possible

Certaines propriétés de rupture macroscopiques des verres semblent imposées par des fluctuations mécaniques ou structurales à très petites échelles.